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Abstract—Automated code generation offers many advantages
over manual software development but treating generators as
trusted black boxes raise problems for certification. Traditional
process-oriented approaches to certification thus require that
the generator be verified to the same level of assurance as the
generated code, but this is infeasible for realistic generators.
However, generators can be extended to support an evidence-
based approach to certification. By careful design of the trusted
kernel, assurance of the generator itself is not required.

In this paper, we describe several related extensions to two
in-house code generators to provide two forms of evidence
along with the code: safety proofs and safety explanations. We
also describe how additionally provided links are used to trace
between the code and the safety artifacts.
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I. INTRODUCTION

Automated code generation is an enabling technology for
model-based software development and has significant poten-
tial to improve the entire software development process. It
promises many benefits, including reduced turn-around times,
increased programmer productivity, and elimination of manual
coding errors. However, the key to realizing these benefits
is of course generator correctness—nothing is gained from
replacing manual coding errors with automatic coding errors.

Consequently, a wide variety of techniques have been inves-
tigated to provide evidence that the generated code is correct.
The existing approaches broadly fall into three different cate-
gories. In certified code generation, the code generator itself is
certified (or qualified), using any technology that is appropriate
or required by a certification authority. This category ranges
from the systematic construction of generator test suites [1]
over the application of compiler verification techniques [2]
to the extraction of the code generator from a correctness
proof in a logical framework like Isabelle [3] or Coq [4]. It
also includes all process-oriented certification approaches, in
particular code generator qualification as mandated by DO-
178B [5]. In certifying code generation, the code generator
simultaneously derives code and certificates. The best example
for this approach is deductive program synthesis based on the
proofs-as-programs principle, using an off-the-shelf theorem
prover [6]. In certifiable code generation, the code generator
is extended by a (separate) certification component that derives

a certificate for the generated code after the fact, using
hints (e.g., loop invariants) provided by the generator, or by
exploiting the idiomatic structure of the generated code. This
category includes the different approaches to proof-carrying
code (PCC) [7], [8], [9] as well as our own previous work
[10], [11], [12].

In this paper, we present an integrated certifiable code
generation system that combines program verification, proof
checking, tracing, and explanation generation to support the
evidence-based safety certification of automatically generated
code. Following our previous work, we focus on the Hoare-
style certification of specific safety properties (similar to the
different PCC approaches) rather than showing full correctness
of the generated programs. The evidence constructed by our
system thus consists primarily of safety proofs but since
certification is a social as much as a technical process, proofs
in isolation from the program are not sufficient, and our system
also supports explanations and links as equally important
aspects of the evidence. We can thus consider the combination
of proofs, explanations, and links as explicit certificates,
i.e., independently checkable evidence of the claimed safety
properties. The independent checking of the proofs can be
automated by a separate proof checking tool that ensures that
the formal proofs are solutions for the correct tasks associated
with the given safety policy, and that their individual steps are
correct. We have used this overall approach and the described
tools to certify a variety of safety properties for code generated
by the AUTOBAYES [13] and AUTOFILTER [14] systems.
However, we concentrate on the certification extensions to
the generators here, and omit details of the code generation
process.

In the next section, we briefly provide the logical back-
ground of our safety certification approach. The following
two sections then describe the use of proofs and explanations
as evidence. Section 5 describes an interactive certification
assistant, and Section 6 concludes.

II. SOURCE-LEVEL SAFETY CERTIFICATION

Safety Certification. Software safety certification demon-
strates that a program does not violate certain conditions dur-
ing its execution. A safety property is an exact characterization
of these conditions based on the operational semantics of the
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language. A safety policy is a set of Hoare rules designed to
show that safe programs satisfy the safety property of interest.
We focus on source-level certification because (i) high-level
domain-specific policies such as frame safety [15] can be
formulated only on the source code level, and (ii) we are
extending a source code generator. Source-level certification
is complementary to object-level approaches like PCC and to
ensure that compilation does not compromise the demonstrated
safety policy, source-level certification should be followed by
object-level certification.

For each notion of safety the appropriate safety property
and corresponding policy must be formulated. This is usually
straightforward; in particular, a safety policy can be con-
structed systematically from a safety property by instantiating
a generic rule set that is derived from the standard rules
of the Hoare calculus [10]. The basic idea is to extend the
standard environment of program variables with a “shadow”
environment of safety variables which record safety infor-
mation related to the corresponding program variables. The
rules are then responsible for maintaining this environment
and producing the appropriate safety obligations. This is done
using a family of safety substitutions that are added to the
normal substitutions, and a family of safety predicates that
are added to the calculated weakest preconditions (WPCs).
Safety certification then starts with the postcondition true and
computes the weakest safety precondition (WSPC), i.e., the
WPC together with all applied safety predicates and safety
substitutions. If the program is safe then the WSPC and all
intermediate proof (i.e., safety and verification) obligations
will be provable without any assumptions.

As an example, consider initialization safety, which ensures
that each variable or individual array element has been ex-
plicitly assigned a value before it is used. Here, the safety
environment consists of shadow variables xinit that contain the
value INIT after the variable x has been assigned a value.
Arrays are represented by shadow arrays to capture the status
of the individual elements. The rules of the policy can be
formulated in a “backwards” style and then used to compute
the WSPCs. For example, the for-rule shown in Figure 1 says
that for an arbitrary postcondition, Q, if c has WSPC P for the
postcondition I [i+1/i], and if the two intermediate obligations
are true, then the WSPC of the loop is as shown. Since the for-
statement assigns a value to the loop variable, i, it also affects
the value of the corresponding shadow variable, iinit (reflected
in the first intermediate obligation). The rule also applies the
safety predicate safeinit to the immediate subexpressions e1 and
e2 of the for-statement. Since the initialization safety property
defines an expression to be safe if all corresponding shadow
variables have the value INIT, safeinit(x[i]) for example simply
translates to iinit = INIT ∧ xinit[i] = INIT.

Logical Annotations. The for-rule, with its explicit loop
invariant, highlights the central role logical annotations (i.e.,
pre- and postconditions and loop invariants) play in Hoare-
style techniques. Fortunately, only relatively simple annota-
tions are required, even for fully automated program proofs
of the different safety properties. This is a consequence of
the highly idiomatic structure of the automatically generated
code and the restriction to specific safety properties. In our

certifiable code generation approach [11], the code generator
itself is extended in such a way that it produces the necessary
annotations together with the code. This is achieved by em-
bedding annotation templates into the code templates, which
are instantiated and refined in parallel by the generator. The
generated logical annotations are then propagated throughout
the code.

Generating Obligations. The annotated code is processed
by a verification condition generator (VCG), which applies the
rules of the safety policy in order to generate the safety obliga-
tions. As usual, the VCG works backwards through the code.
At each statement, the safety predicates are added and the
safety substitutions are applied. The VCG has been designed
to be “correct-by-inspection”, i.e., to be sufficiently simple
that it is straightforward to see that it correctly implements
the rules of the logic. Hence, the VCG does not implement
any optimizations or apply any simplifications; in particular, it
does not actually apply the substitutions but maintains explicit
formal substitution terms.

III. PROOFS AS EVIDENCE

A. Proof Construction

Simplification. Since the VCG does not apply any opti-
mizations and simplifications, the generated obligations tend to
be large and to overwhelm current automated theorem provers
(ATPs). They need to be simplified aggressively, therefore,
before they can be submitted to an ATP with any hope
of success. Our system thus includes several rewrite-based
simplifiers. We focus on rewrite-based simplifications rather
than decision procedures because rewriting is easier to certify:
each individual rewrite step T  S could be traced and
checked independently, e.g., by using an ATP to prove that
S ⇒ T holds. However, this rewrite checking is not yet
implemented.

Processing Obligations. The simplified safety obligations
are exported as a number of individual proof obligations using
TPTP first-order logic syntax [16]. For provers that do not
accept the TPTP syntax, the appropriate (trusted) TPTP2X-
converter is used before invoking the theorem prover. A small
script then adds the axioms of the domain theory; parts of the
domain theory are generated dynamically in order to facilitate
reasoning with (small) integers. The completed proof task is
processed by the ATP and the proof is stored as part of the
certificate.

Results. We have evaluated several state-of-the-art ATPs
on more than 25,000 proof tasks generated by our system.
As expected, the unsimplified tasks prove to be too difficult
for the provers, and only about two-thirds of the “out-of-the-
box” tasks could be proven. After aggressive simplification,
however, most of the provers could solve almost all emerging
tasks. More details of the evaluation can be found in [17].

B. Proof Checking

Safety certification remains a challenging task for ATPs:
the longest proof found during our previous experiments
involved more than 8000 inference steps. Consequently, simple
“correct-by-inspection” theorem provers like leanTAP [18]
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P {c} I [i + 1/i] I [INIT/iinit] ∧ e1 ≤ i ≤ e2 ⇒ P I [e2 + 1/i] ⇒ Q

I [e1/i] ∧ e1 ≤ e2 ∧ safeinit(e1) ∧ safeinit(e2) {for i := e1 to e2 inv I do c} Q

Fig. 1. Hoare rule for for-loops

are not powerful enough. Instead, we need to employ high-
performance ATPs, which use complicated calculi, elaborate
data structures, and optimized implementations. This makes
formal verification of their correctness infeasible [19]. More-
over, since most ATPs are under continuous development,
single versions are never subjected to enough validation so that
“tool pedigree” arguments remain weak.1 In fact, despite the
soundness checks applied in the CADE ATP System Compe-
tition (CASC), [21], there have been several unsoundnesses in
participating ATPs, which have been detected only afterwards
[22], [23], [24].

If the ATPs generate evidence in the form of sufficiently
detailed proofs, they can be independently verified by a proof
checker. Its function is to ensure that the ATP’s output really
is a proof in the logical system in use. Techniques include the
syntactic validation of Otter proof steps by Ivy [19], higher-
order proof term reconstruction in Isabelle [25], higher-order
proof step checking in HOL [26], reducing proof checking
to type checking as in Coq [4], and semantic derivation
verification [27], which has been used in this work. Here, the
required semantic properties of each proof step are encoded
in one or more proof check obligations, which are then
discharged by trusted ATPs. If all obligations are discharged,
the proof output of the original ATP is verified. This approach
is tractable because the correctness proof for each individual
step in the original proof is substantially easier than the
original proof itself, and thus within reach of the trusted ATP.
For certification purposes, all proofs found by the trusted
ATP constitute evidence, and become part of the certificate
constructed by the certification system.

Semantic Derivation Verification. The proofs produced
by an ATP can be considered abstractly as derivations, i.e.,
directed acyclic graphs (DAG), whose leaf nodes are formulae
(possibly derived) from the input problem (i.e., the original
VC and any added axioms and lemmas), whose interior
nodes are formulae inferred from parent formulae, and whose
unique root nodes are the final derived formulae. Derivation
verification then involves three notionally distinct phases. First,
it is necessary to check the overall structure of the ATP output:
specifically, that the derivation is a well-formed DAG. Second,
it is necessary to check that each leaf node is a formula that
occurs in, or is derived from, the input problem. This ensures
that the ATP solves the original problem. Third, it is necessary
to check that each inferred formula has the required semantic
relationship (typically an implication from the premises of the
applied inference rule to its conclusion) to its parents. This
ensures that the proof is correct.

Theorem Obligations. For each application of an in-

1The notable exception is Otter [20], which has been essentially unchanged
since 1996. However, our previous experiments have shown that its perfor-
mance is not sufficient for discharging the safety obligations we generate
[17].

ference rule that derives a logical consequence, a theorem
obligation is formed to show that the inferred formula is
indeed a logical consequence of the parent formulae. If the
inference rule implements any theory (e.g., paramodulation
implements most of equality theory), then the corresponding
axioms of the theory are added as axioms to the obligation.
The obligation is then handed to the trusted ATP system. If
the trusted system finds a proof, the inference step is correct.

For inference rules that introduce branches in the original
proof search, it is necessary for the checker to discharge
multiple theorem obligations. For example, explicit splitting
as implemented in SPASS [28] takes a problem S ∪ {L∨ R}
in clausal normal form (CNF), where L and R do not share any
variables, replaces it by two subproblems S∪{L} and S∪{R}
and searches for refutations of both subproblems. Obviously,
both refutations must be checked to assure that a proof of the
original problem has been found. In addition, to verify the
splitting step’s role in overall proof, a theorem obligation to
prove ¬(L ∨ R) from {¬L,¬R} must be discharged.

Leaf Theorem Obligations. The leaf formulae of a
derivation must occur in or be derived from the original
input problem—otherwise, the ATP solves a different problem.
To verify this, leaf theorem obligations to prove each leaf
formula from the input formulae must be discharged. This
makes the technique robust to some of the preprocessing
inferences that are performed by ATP systems, e.g., factoring
and simplification of the input. If the input problem is in
first-order form (including quantifiers), and the derivation is
a CNF refutation, the leaf clauses may have been formed with
the use of Skolemization. Such leaf clauses are not logical
consequences of the original input formulae. Skolemization
steps can be incompletely verified by discharging a theorem
obligation to prove the parent formula from the Skolemized
formula. Although this is an incomplete verification step (i.e.,
unsound Skolemization steps can pass this check), it catches
some simple errors and thus provides additional assurance.

Experimental Evaluation. As a practical test and evalua-
tion of the proof checking approach described here, we scruti-
nized the proofs for 109 safety obligations generated from the
certification of programs generated by the AUTOBAYES and
AUTOFILTER code generators [17]. These obligations are also
included as “difficult” problems in the TPTP problem library
[16], the standard corpus for testing and evaluating ATPs.

The original proofs were found by the resolution provers
EP (Version 0.82) [29] and by SPASS (Version 2.1). The
proofs output by EP include details of the CNF-conversion,
and the subsequent CNF-refutation while SPASS omits the
CNF-conversion. Both systems are based on the superposition
calculus, but differ in the specific inference rules used. Ad-
ditionally, the systems have quite different control heuristics.
As a result the proofs produced by the two systems have quite
different characteristics.
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The proof checking was done using the GDV system [27].
For the EP proofs, GDV was configured to check all aspects
of each proof. For the SPASS proofs, GDV was configured to
check only selected aspects of each proof: leaves were not ver-
ified because SPASS does not document the CNF-conversion,
all inferred formulae and splitting steps were semantically
verified, and the derivation was checked structurally, with
the exception of structural aspects specific to splitting steps
that were too time-consuming for the full set of proofs. We
used Otter 3.3 [20] as trusted ATP for discharging theorem
obligations. The experiments were run on Linux-based PCs
with 2.8GHz and 1GB RAM, with a 10s CPU time limit for
each discharge.

EP can solve 48 of the 109 problems, with 46 of the proofs
fully verified. Both failure cases were caused by Otter’s in-
ability to discharge obligations arising from steps in the CNF-
conversion. In particular, the obligations to verify the step
that negates the conjecture, which entails proving the negation
of the negation from the original, could not be discharged.
Most of the proofs induce less than 10 theorem obligations
and only one proof induces more than 100 obligations. Most
obligations were discharged quickly, with only three of the
590 obligations requiring more than 0.3s. SPASS can solve
83 of the 109 problems, which includes the 48 problems
solved by EP, but the proofs are obviously different. All 83
of the SPASS proofs passed the verification checks chosen.
Again, most of the proofs require less than 10 obligations to
be discharged, but SPASS produces some very large proofs
that consequently induce a very large number of obligations:
18 proof induces more than 100 theorem obligations and the
largest proof resulted in 3493 obligations. At the same time,
all 19737 SPASS obligations were discharged in less than 0.1s.
More details can be found in [30].

Results. In the absence of proof checking, the applied
ATP must become part of the trusted infrastructure, which
substantially increases its size and complexity. Proof checkers
are much smaller and can provide additional assurance, namely
that the proofs correctly solve the original problem. We have
applied semantic derivation verification to successfully check
the safety proofs found by SPASS and EP. Our results indicate
that the approach is feasible for the proofs found in this
application domain, despite the substantial computational costs
incurred by proof checking.

IV. EXPLANATIONS AS EVIDENCE

Although formal proofs can be an effective way of demon-
strating safety and correctness, certification traditionally re-
quires documentary evidence either that the software develop-
ment complies with some process (e.g., DO-178B [5]), or that
the artifacts are safe.

Treating a prover as a trusted black-box, or even checking
its proofs, however, does not help in understanding why code
is safe and is therefore difficult to reconcile with traditional
approaches. Although proofs generated by an ATP can be
verbalized, they are still difficult to understand and, more
significantly, to relate to the actual program. We claim, how-
ever, that it is unnecessary to render actual proof steps; the

verification conditions alone provide sufficient insight into the
safety of a program, can be related to the corresponding parts
of the program, and can be rendered as comprehensible text.
Based on this assumption, we have developed two related tech-
niques based on extensions to the underlying logic: explanation
of the VCs, which is useful for debugging and tracing; and
explanation of program safety.

A. Explaining VCs

In practice, many things can—and typically do—go wrong
with program verification: the program may be incorrect or
unsafe, the annotations may be incorrect or incomplete, the
simplifier may be too weak or counter-productive, the domain
theory may be incomplete, and the ATP may run out of
resources. In each of these cases, users are confronted only
with failed VCs, but are left without any information about
the causes of the failure. They must thus analyze the VCs by
interpreting their constituent parts, and relating them through
the applied Hoare rules and simplifications to the correspond-
ing source code locations. Unfortunately, VCs are a detailed
low-level representation of both the underlying information
and the process used to derive it, so this is often difficult to
achieve.

In this paper we sketch an implemented technique that helps
users to trace, analyze, and understand VCs. The idea is to
systematically extend the Hoare rules by “semantic mark-up”
so that we can use the calculus itself to build up explanations
of the VCs. This mark-up takes the form of semantic labels
that are attached to the meta-variables used in the Hoare rules,
so that the VCG then produces labeled versions of the VCs.
The labels are maintained through the different processing
steps, and are then extracted from the final VCs and rendered
as natural language explanations. The main feature of VCs
that we consider here is their structure. More domain-specific
mark-up can be used to explain the purpose of VCs.

Figure 2 shows two different versions of a small exam-
ple program to illustrate the process. Figure 2(a) shows the
original annotations required (before propagation) to certify
the program as initialization safe while Figure 2(b) shows the
result of the propagation phase. Note that the propagation step
already introduces some labels; for example, in line 7 the sub-
formulas xinit = INIT and yinit = INIT are labeled with their
original locations (i.e., lines 3 and 5). We use the notation
dtelab to denote a term t that is labeled with a label lab; the
labels can also have internal structure.

Although the example is deliberately kept very simple,
it already illustrates several of the difficulties that arise in
interpreting VCs, in particular the combination of information
from throughout the program into a single VC. The explana-
tions become particularly complicated when the substitutions
arising from the assign- and array-update-rules of the Hoare
calculus are taken into account because the non-local effects
of substitution applications need explaining: the sub-formulas
from the annotations are no longer preserved intact and so need
to be traced to their respective origins. For larger programs the
overall structure quickly becomes complex. Figure 3 shows the
automatically generated structural explanation for an example
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var i,x,y,z;
x:=1;
post xinit = INIT
y:=2;
post yinit = INIT
z:=x+y;
post zinit = INIT
for i:=0 to 2

inv true do
z:=z*z;

(a)

var i,x,y,z;
x:=1;
post xinit = INIT
y:=2;
post dxinit = INITeorig(3) ∧ yinit = INIT
z:=x+y;
post dxinit = INITeorig(3) ∧ dyinit = INITeorig(5) ∧ zinit = INIT
for i:=0 to 2

inv dxinit = INITeorig(3) ∧ dyinit = INITeorig(5) ∧ dzinit = INITeorig(7) ∧ true do
z:=z*z;

(b)

Fig. 2. (a) Code with actual annotations (b) Code with annotations after propagation

VC derived using the full annotations in Figure 2(b). For
presentation purposes we did not simplify the VCs as this
would obscure their structure and complicate their understand-
ing even further.

B. Labeled Rules

Modified Hoare rules concisely capture the semantic mark-
up (i.e., label types and positions) required for any given
feature of the VCs that is to be explained. Labels can be added
in four places: to the “incoming” postcondition of a recursive
VCG call in the premise of an inference rule, to the WSPC,
to a generated VC, or to a substitution. The labels are not
dependent on the specific safety property and could contain
additional embedded labels for more detailed or property-
specific explanations.

We restrict our attention here to the for-rule shown in
Figure 1, which we extend with semantic labels to give the
rule in Figure 4. Note that we omit location information from
all labels shown here in order to keep the presentation clear.
The WSPC comprises the safety predicates and the invariant,
which has to be established in the entry form (i.e., at the
lower bound of the loop) and is thus labeled with d·eest inv. In
the premise, individual sub-formulas of both the exit-condition
I ∧¬b ⇒ Q and the step-condition I ∧ b ⇒ P are labeled ap-
propriately. In the triple for the step condition, P {c} I [i+1/i],
the incoming postcondition I [i + 1/i] must be labeled with
its purpose d·eest inv iter for the recursive call; moreover, all
emerging VCs must be marked up with the secondary purpose
d·epres inv, meaning that they contribute to the preservation of
the invariant. We indicate this by labeling the entire triple. In
addition, the substitutions (more precisely, the right-hand sides
of the individual replacements) are marked-up to record their
type and the origin of the substituted expressions.

Note how the same formula I is used in four different
roles and consequently labeled in four different ways. This
contextual knowledge is only available at the point of rule
application and can not be easily recovered by a post-hoc
analysis of the generated VCs.

C. Explanation Generation

The generation of the actual textual explanations is inde-
pendent of the particular feature which is to be explained and

proceeds in two phases. First, there is a rewrite-based nor-
malization of the VCs and corresponding labels. The rewrite
rules used for the normalization of unlabeled VCs (Section
III-A) are not label-aware and cannot be applied “as is” to the
labeled case because (i) the labeling changes the term structure
and thus the applicability of the rules and (ii) the labels need
special handling. We have therefore defined a set of label-
aware rewrite rules (omitted here) that are used together with
additional unlabeled rules to simplify the labeled VCs.

The normalization is then followed by a rendering phase
that extracts and further normalizes the final label structure
and, using feature-specific explanation templates, turns it into
natural language text.

D. Explaining Program Safety

In contrast to Section IV-A, where individual VCs are ren-
dered to give a problem-centric explanation of the verification,
we can use the same underlying information (along with some
more information about the program), to give a program-
specific explanation.

Figure 5 gives an example program and the corresponding
initialization safety explanation provided by the system. The
program needs an invariant (not given here) in order to prove
its safety. The explanation is only generated if the theorem
prover successfully proves all the corresponding verification
conditions. Note that we currently perform no symbolic eval-
uation during the rendering. The safety of the final assignment
(line 14) is proven using the invariant but the explanation
simply indicates where this is used (see [31] for more details).

V. CERTIFICATION ASSISTANT

The previous two sections have discussed two important
forms of evidence. As we have argued above, it is crucial
for certification to relate this evidence to the program under
consideration. We have therefore built a certification assistant
that provides access to the auxiliary artifacts that are produced
during the certification. This includes the intermediate stages
in the processing chain (generated axioms, clausal normal form
etc.), prover log files, and actual proofs, depending on the
required level of evidence. These artifacts can support, or in
the absence of a proof collectively serve as, the certificate, and
can be inspected as raw text files, or using third-party tools,
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The purpose of this proof obligation is to show that the loop invariant at line 9 under the substitution originating
from line 10 is still true after each loop iteration; it is also used to show the preservation of the loop invariant at
line 9. Hence, given

- the postcondition at line 3 propagated into the invariant at line 9,
- the postcondition at line 5 propagated into the invariant at line 9,
- the postcondition at line 7 propagated into the invariant at line 9,
- the invariant at line 9,
- the loop bounds at line 10,

show that the loop invariant at line 9 under the substitution originating from line 11 is still true after each iteration
to line 11.

Fig. 3. Explanation automatically generated for the VC 0 ≤ i ≤ 2 ∧ xinit = INIT ∧ yinit = INIT ∧ zinit = INIT ⇒ INIT = INIT derived from Figure 2(b)

dP {c} dI [di + 1esub/i]eest inv iterepres inv

ddI [dINITesub safety/iinit]
eass inv ∧ de1 ≤ i ≤ e2

eass bounds ⇒ Pepres inv

dI [de2 + 1esub/i]eass inv exit ⇒ Q
(

dI [de1
esub/i]eest inv ∧ de1 ≤ e2

eest bounds

∧dsafeinit(e1)
esafety ∧ dsafeinit(e2)

esafety

)

{for i := e1 to e2 inv I do c} Q

Fig. 4. Hoare rule for for-loops with semantic markup for initialization safety

1
2
3
4
5
6
7
8
9

10
11
12
13
14

var a[0:9];
var b;
var c;
var d;
var x;
b:=1;
c:=2;
d:=b*b+c*c;
for i:=0 to 9

if i<5
a[d+i]:=i;

else
a[2*d-1-i]:=i;

x:=a[a[5]];

Safety Explanation for Initialization of Variables
The assignment b:=1 at line 6 is safe.
The assignment c:=2 at line 7 is safe.
The assignment d:=b*b+c*c at line 8 is safe; the term b is initialized from b:=1 at
line 6; the term c is initialized from c:=2 at line 7.
The loop index i ranges from 0 to 9 and is initialized at line 9.
The conditional expression i<5 appears at line 10; the loop index i ranges from 0 to
9 and is initialized at line 9.
The assignment a[d+i]:=i at line 11 is safe (if the condition i<5 at line 10 is true);
the term d is initialized from d:=b*b+c*c at line 8; the term b is initialized from
b:=1 at line 6; the term c is initialized from c:=2 at line 7; the loop index i ranges
from 0 to 9 and is initialized at line 9.
The assignment a[2*d-1-i]:=i at line 13 is safe (if the condition i<5 at line 10
is false); the term d is initialized from d:=b*b+c*c at line 8; the term b is initialized
from b:=1 at line 6; the term c is initialized from c:=2 at line 7; the loop index i
ranges from 0 to 9 and is initialized at line 9.
The assignment x:=a[a[5]] at line 14 is safe; using the invariant for the loop at line
9 and the postcondition i:=9+1 after the loop.
[Certified by e-setheo on Mon Mar 15 18:02:24 PST 2004 for init property.]

Fig. 5. Left: Example program (annotations omitted) Right: Auto-generated explanation for init safety property

e.g., the GDV derivation verifier [27] and the proof visualizer
from the TPTP tool suite [16].

The assistant also provides some limited functionality for
creating proofs: it allows a (TPTP-compliant) prover to be
chosen and invoked for selected VCs, and for the resulting
proofs to be checked. We will concentrate here, however, on
the assistant’s use in tracing the VCs.

As discussed above, manually tracing VCs back to their
source is quite difficult as the verification process is inher-
ently complex and a single VC can depend on a variety of
information distributed throughout the program.

Section IV-A described the mark-up for explanations. Since
this includes location information, it can also be used to trace
between the VCs and the source code. The VCG adds the

appropriate information to the formulas it constructs as it
processes a statement at a given source code location. We
currently use simple line numbers as locations rather than
individual subterm positions [32].

Figure 6 shows how the tracing information can be used
to support the certification process. A click on the source
link associated with each verification condition prompts the
certification assistant to highlight in boldface all affected lines
of the code. A further click on the verification condition link
itself displays the formula and explanation, which can then be
interpreted in the context of the relevant program fragments.
This helps domain experts assess whether the safety policy is
actually violated when a proof attempt has failed, which parts
of the program are affected, and eventually how the violation
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Fig. 6. Certification assistant: linking from VC

can be resolved. This traceability is also mandated by relevant
standards such as DO-178B.

In practice, safety checks are often carried out during code
reviews [33], where reviewers look in detail at each line of the
code and check the individual safety properties statement by
statement. To support this, linking works in both directions:
clicking on a statement or annotation displays all VCs to which
it contributes (i.e., which are labeled with its line number).
Figure 7 shows the result of clicking on the label for line 220;
the unproven verification condition indicates that this line of
code has not been completely cleared yet.

VI. CONCLUSIONS

We believe that there is a natural synergy between code
generation and evidence-based certification. To gain trust in a
black-box generator, it is necessary to have evidence that the
generated code satisfies some desirable criteria. So long as the
evidence is in a form that can be independently scrutinized,
the generator can provide that evidence itself without loss of
assurance. Since certification is ultimately a human process it
is important to support both machine and human checking of
evidence.

We have implemented a safety-proof based extension to two
code generators that integrates the generation of safety proofs,
safety explanations, and a browser-based assistant that allows
tracing between the various generated artifacts. In more recent
work [34], we have modularized the certification system in

such a way that it can be customized for third-party code
generators.

Our long-term vision is that the system will support the con-
struction of a safety case for the generated code, incorporating
information about the generator itself, the code derivation,
diverse forms of evidence, and customizable documentation.
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